Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon.

نویسندگان

  • M P Stewart
  • J M Buriak
چکیده

A novel white light-promoted reaction using photoluminescent nanocrystalline silicon enables the hydrosilylation of alkenes and alkynes, providing stabilization of the porous silicon without significant loss of the photoemissive qualities of the material. Photopatterning and lithographic fabrication of isolated porous silicon structures are made possible. Experiments and observations are presented which indicate that the light promoted hydrosilylation reaction is unique to photoluminescent silicon, and does not function on nonemissive material. Hydrosilylation using a reactive center generated from a surface-localized exciton is proposed based upon experimental evidence, explaining the photoluminescence requirement. Indirect excitons formed by light absorption mediate the formation of localized electrophilic surface states which are attacked by incoming alkene or alkyne nucleophiles. Supra-band gap charge carriers have sufficient energy to react with nucleophilic alkenes and alkynes, thereupon causing Si-C bond formation, an irreversible event. The light-promoted hydrosilylation reaction is quenched by reagents that quench the light emission from porous silicon, via both charge transfer and energy transfer pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoluminescent silicon nanocrystals with chlorosilane surfaces--synthesis and reactivity.

We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a d...

متن کامل

Assembling photoluminescent silicon nanocrystals into periodic mesoporous organosilica.

A contemporary question in the intensely active field of periodic mesoporous organosilica (PMO) materials is how large a silsesquioxane precursor can be self-assembled under template direction into the pore walls of an ordered mesostructure. An answer to this question is beginning to emerge with the ability to synthesize dendrimer, buckyball, and polyhedral oligomeric silsesquioxane PMOs. In th...

متن کامل

Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization

Photoinitiated hydrosilylation was used to attach acrylic acid to the surface of photoluminescent silicon nanoparticles, thereby producing water-dispersible, propionic-acid-terminated particles. From transmission electron microscope (TEM) observations, the average diameters of the synthesized nanocrystals were 1.9-2.4 nm. It is likely that smaller particles (<1.5 nm) were also present but could...

متن کامل

Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation.

We suggest a method for efficient (high-coverage) grafting of organic molecules onto photoluminescent silicon nanoparticles. High coverage grafting was enabled by use of a modified etching process that produces a hydrogen-terminated surface on the nanoparticles with very little residual oxygen and by carefully excluding oxygen during the grafting process. It had not previously been possible to ...

متن کامل

In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals.

Surface passivation of semiconductor nanocrystals (NCs) is critical in enabling their utilization in novel optoelectronic devices, solar cells, and biological and chemical sensors. Compared to the extensively used liquid-phase NC synthesis and passivation techniques, gas-phase routes provide the unique opportunity for in situ passivation of semiconductor NCs. Herein, we present a method for in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 32  شماره 

صفحات  -

تاریخ انتشار 2001